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The properties of atoms close to an absorptive dielectric are studied using the phenomenological Maxwell’s
equations. Although radiative decay has been considered by many authors, the coupling of atoms with longi-
tudinal modes does not seem to have been treated in detail. Here we show that there are two main effects. The
first is a change in the atomic interaction potential from the Coulomb one to a static potential, i.e., one that
satisfies a Poisson equation featuring the static dielectric function �stat=������=0. The second is the decay of
excited atomic states through longitudinal field interactions. We find that the corresponding decay constant is
nonzero only for atom-dielectric distances in the order of an atomic diameter and that it decreases exponen-
tially fast on an atomic scale with increasing distance. We also show that the Hamiltonian used by the Jena
group �Dung et al., Phys. Rev. A 65, 043813 �2002��, featuring the Coulomb potential, is unitarily equivalent
to one containing the static potential.
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I. INTRODUCTION

A. Background

From a microscopic point of view the interactions in a
system of nonrelativistic charged particles and the quantized
vacuum electromagnetic field in the Coulomb gauge can be
described in terms of the Coulomb potentials between the
particles and a minimal coupling interaction between charges
and field. In practice, in view of the many degrees of free-
dom, processes such as the decay of an excited atom in the
presence of a dielectric �for instance, a photonic crystal� are
hard, if not impossible, to treat in this way. Instead a quan-
tized version of the macroscopic �phenomenological� Max-
well’s equations is often used to deal with such situations. An
advantage of this approach is that the properties of the di-
electric are now stored in a single object, the permittivity
�electric permeability, dielectric function� ��x ,��, which is
in general a complex function of position x and frequency �.
On the other hand, we have to remember that the macro-
scopic Maxwell’s equations have a limited range of validity.
The important thing here is that they can become unreliable
on the scale of atomic dimensions. Also ionization phenom-
ena are not incorporated and the atoms or ions constituting
the dielectric remain in bound states. However, the latter can
become perturbed, giving rise to polarization.

Another point is the interaction with the material of an
atom embedded in the material or close to its boundary. One
expects that the interaction of an embedded atom with its
nearest neighbors is not correctly described. In a microscopic
approach the interaction with radiative field modes involves
the vector potential but now the microscopic and macro-
scopic vector potentials are in general different. The latter
problem is often taken care of in an approximate way by
using the so-called real cavity model, see Sec. IV.

A general issue, common to almost all problems where
the deexcitation of an unstable state is considered, is the
choice of the initial state. In the present case it is the decay of
an excited embedded atom due to radiative or other pro-
cesses. It is customary to describe the decay of such an un-
stable state as a time evolution problem starting at some

finite initial time, say t=0. But then the question arises as to
how this state is prepared. In the present situation, where
matter-field interactions are involved, the initial state de-
pends in addition on the employed gauge. From a more fun-
damental point of view the actual process is often a scatter-
ing process, where initially, at large negative times, a photon
wave packet is prepared outside the medium and the result-
ing radiation is observed outside the medium at large posi-
tive times. This process is well-defined and less sensitive to
gauge changes, see Ref. �1�, Sec. X.

Returning to the case at hand the question is how to excite
the atom selectively, for instance, through photon absorption.
Obviously, if the atomic transition frequency �0 is in the
order of some internal transition frequency �i of the material
this is only possible if the atom is well separated from the
dielectric, which is an uninteresting case. However, if an �i
is present with �0��i the material would be very strongly
absorbing, i.e., not a dielectric at all. Here we note that, due
to the interaction with the material the atomic levels will be
shifted and possibly broadened if some absorption takes
place. This happens to a lesser extend for the often used rare
earth atoms, where the active electron is an inner shell one
that is somewhat screened from its surroundings.

Thus, if the atomic transition frequencies differ apprecia-
bly from those in the material, selective excitation becomes
possible. This is the situation we consider in the present
work. In practice the situation can be more complex. Rare
earth atoms, for instance, are difficult to excite directly. Here
a so-called sensitizer �a large molecule�, close to the atom, is
excited initially. Its excitation energy is then converted to the
atom, leaving it in a higher excited state. Subsequently it
loses part of its energy to its surroundings and the atom ends
up in the excited state of interest.

In the sequel we discuss, from the macroscopic point of
view, some aspects of longitudinal interactions of atoms
�ions, molecules� with absorptive dielectrics. So far the em-
phasis has usually been on transverse interactions with the
fields since these are responsible for radiative decay pro-
cesses. However, longitudinal interactions are also present
and here we investigate the latter somewhat further.
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As mentioned above, in the vacuum case, using the Cou-
lomb gauge, the longitudinal atom-field interactions result in
Coulomb potentials between the charges constituting the
atom, whereas the coupling with the vacuum electromagnetic
field involves the vector potential, which is transverse. All
this changes if an absorptive dielectric is present. Then, in
addition to transverse ones, there are also nonstatic longitu-
dinal fields, which can be quantized along with the trans-
verse fields. One can continue to use a transverse vector
potential but then, in addition to the Coulomb potential, a
second potential appears, which depends on the longitudinal
field operators. This approach was taken by Dung et al. �2,3�,
who considered spontaneous atomic decay and intermolecu-
lar energy transfer. However, it is also possible to proceed
differently. Then the Coulomb potential is modified but still
does not contain field operators, whereas the vector potential
inside the dielectric is no longer transverse. In fact both rep-
resentations are related by a unitary transformation, as we
show below in Sec. III.

The formalism we use here provides an interesting divi-
sion into effects due to a modification of the Coulomb po-
tential and effects related to the interaction of an atom with
the quantized longitudinal field modes. For an atom in
vacuum close to an interface with the absorptive dielectric,
the first gives a correction proportional to an inverse power
of the atom-dielectric distance, whereas the second shows an
exponential decay on an atomic scale, i.e., with a half width
in the order of an atomic diameter. Here we note that this
involves a length scale on which the macroscopic equations
become questionable. However, although numerically the re-
sult may be far off, its form is consistent with what one
would expect from microscopic considerations.

Below we denote �f ,g�= �g � f� and ea=a / �a � =a /a. In the
sequel we make use of the decomposition into longitudinal
and transverse components of three-dimensional vector
fields. This is usually done by writing the field as a sum of a
divergence and a rotation

f�x� = �x��x� + �x � A�x� , �1.1�

but this becomes a bit problematic in case f�x� has disconti-
nuities. Therefore it is more convenient to give a definition

through its Fourier transform f̃�k�, which exists for any
square integrable f�x�. Then the longitudinal component is

the part of f̃�k� along k and we define �U is the 3�3 unit
matrix�

�P	 · f̃��k� = f̃	�k� = ekek · f̃�k� ,

�P� · f̃��k� = f̃��k� = �U − ekek� · f̃�k� , �1.2�

which leads to the corresponding decomposition for any
square integrable f�x�.

B. An example from electrostatics

To set the stage we start with an example from electro-
statics. Consider a fixed charge e, placed above a dielectric
filling the half space x3�0 with permittivity ���x� is the
Heaviside step function�

��x� = 1 + ���− x3� . �1.3�

The field in the half space x3	0 is then given by �4�

E�x� = − �x
 e

4
�x − X�
−

�

2 + �

e

4
�x + X�� , �1.4�

where X=Xe3, e3= �0,0 ,1�, is the position of the charge.
Thus an electron �charge −e, position x� in x feels the above
field and if the charge in X is a proton, so we are talking
about a hydrogen atom, the electron moves in the potential

V = −
e2

4
�x − X�
+

�

2 + �

e2

4
�x + X�
−

�

2 + �

e2

8
�x3�
.

�1.5�

The last term expresses the electrostatic interaction of the
electron, which is not supposed to be fixed, with the dielec-
tric, in this case a mirror charge in �x1 ,x2 ,−x3�.

In general, for a set of charged particles with positions xn,
masses mn, and charges en we have for the displacement D

D�x� = ��x�E�x�, �x · D�x� = ��x� = �
n

en��x − xn�

�1.6�

and

E�x� = − �x��x�, ��x� = �
n

en�x,xn� ,

− �x · ��x��x�x,xn� = en��x − xn� . �1.7�

For charges above a dielectric half space, as above, the total
potential is

V =
1

2�
m,n

emen�xm,xn� , �1.8�

where infinite self-interactions are deleted in the above sum,
but interactions between a charge and the dielectric, such as
the last contribution to V in Eq. �1.3�, are retained.

II. QUANTUM ELECTRODYNAMICS

We now turn to the quantum electrodynamic case. For
absorptive dielectrics, characterized by the, in general com-
plex, space- and frequency-dependent permittivity

��x,�� = 1 + 
0

�

dt exp�i�t���x,t� = 1 + �̂�x,�� , �2.1�

with ��x , t� the susceptibility, the general quantized case for
atoms interacting with linear absorptive dielectrics was dis-
cussed in Ref. �1�. Essential in this formalism is the intro-
duction of two auxiliary fields, so that the combined set of
electromagnetic and auxiliary fields are the solutions of
equations of motion that are first order in time and no longer
contain time convolutions as in the constitutive relation
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D�t� = E�t� + 
t0

t

ds��t − s�E�s� , �2.2�

between D and E. From a physical point of view the formal-
ism describes the coupling of the vacuum electrodynamic
field with a continuum of harmonic oscillators, the latter de-
scribing the material subsystem. Thus we retrieve a familiar
picture, going back to Lorentz, but note that it is an exact
consequence of Maxwell’s equations.

The extended time evolution is unitary, which allows the
introduction of a Lagrange-Hamilton formalism, which can
then be quantized �5�. The Hamiltonian for the quantized
fields interacting with atoms through a minimal coupling
term, is given in Refs. �1,6� �we employ units such that �0
=c=�=1, mn is the mass of the nth charge, xn its coordinate,
and pn its momentum�

H = Hf + �
n

1

2mn
�pn − enA�xn��2 + Vstat, �2.3�

where

Hf = �
�
 d��a*�u���a�u��� �2.4�

is the quantized Hamiltonian for the interacting electromag-
netic and auxiliary fields. Vstat is a generalization of the po-
tential V similar to Eq. �1.6�. It is given by

Vstat = dx��x���x� ,

− �x · �stat�x��x��x� = ��x�

= �
n

en��x − xn� , �2.5�

where �stat�x�=��x ,����=0 and self-interactions are dis-
missed. The vector potential A�x� is given by

A�x� = �
�
 d��2��−1/2a*�u���u��1�x� + H.c. �2.6�

Although A�x� is transverse outside the dielectric, this is not
the case inside; the employed gauge deviates from the Lor-
entz gauge �6�. The functions u�� are eigenfunctions of a
real, non-negative self-adjoint operator He, acting in He
= Hem � Haux=L2�R3 ,dx ;C3� � �L2�R3 ,dx ;C3� � L2�R+ ,d���
�1,6� and have components u��1 in the electric field subspace
Hem and u��2 in the auxiliary field subspace Haux. He being
real, the components of u�� can be chosen real. For
��x ,��piecewise constant in x, the transverse and longitudi-
nal field components are decoupled in Hf and A�x� �7�, pro-
vided the classical fields are square integrable.

It is customary to make a long wavelength or dipole ap-
proximation, leading to the replacement A�xn�→A�X�,
where X is the atomic nuclear coordinate. But then, for X
outside the dielectric, A�X� is transverse and the minimal
coupling interaction does no longer give rise to an interaction
between atoms and longitudinal fields, the remaining longi-
tudinal atom-dielectric interaction being Vstat−VCoul, which

leads to shifts in the atomic eigenvalues and emission spec-
trum but not to decay of excited atomic states through lon-
gitudinal interactions.

However, if we do not make a long wavelength approxi-
mation, the situation changes, as we shall now discuss. Thus
we consider a one-electron atom with nuclear charge e and
coordinate X, which we suppose to be frozen outside the
dielectric, and electronic coordinate, momentum, charge, and
mass x, p, −e, and m. In the present situation, where we are
dealing with Vstat rather than VCoul, the atom still has a non-
degenerate ground state. The first excited states, which are a
set of degenerate s and p states in the Coulomb case, can
now split up, depending on the properties of the dielectric
medium.

Let the atomic ground state be 1 with associated eigen-
value �1 �the atomic eigenstates are now eigenstates in the
potential Vstat� and suppose that at the initial time t=0 the
system is in the state �=2 � vac, 2 being an atomic ex-
cited state at the eigenvalue �2 and vac the field vacuum
state. The survival probability for the state � is then W�t�
= �f�t��2, t�0, where ��=R+ i�, �	0�

f�t� = „��t�,�… = �exp�− iHt��,��

= �2
�−1
�

dz exp�− izt���z − H�−1�,�� .

�2.7�

Here �f ,g�= �g � f� is the inner product of states f and g. Then,
if ��z−H�−1� ,�� has an analytic extension in the lower com-
plex half plane C− with poles in zj =� j − i� j �C−, the corre-
sponding pole contributions give rise to decaying terms in
f�t�, proportional to exp�−2� jt�. In Refs. �5,6� we used the
Feshbach formula to obtain the leading order contribution to
� j. In Ref. �6� we used the interaction e

mp ·A�X� but, as we
have noted above, this is not sufficiently accurate for longi-
tudinal decay. Thus we employ

Hmf =
e

2m
�p · A�x� + A�x� · p� . �2.8�

Now using the Feshbach formalism �for details see Appendix
A� we find that the eigenvalue �2 acquires a negative imagi-
nary contribution �, which, to leading order, is given by

� = ���0� =
i

2
� e

2m
�2 dxdyg�x� · �x�Re�z� − Re

*�z��y� · g�y�

=
i

2
� e

2m
�2

��Re�z� − Re
*�z��g,g� , �2.9�

where z2=�0
2+ i0 with �0=�2−�1 the atomic transition fre-

quency and �recall that U is the unit 3�3 matrix�

Re�z� = �z2��x,z� − h�−1,

h = − �x
2U + �x�x = p2U − pp, p = − i�x,

g�x� = �r1�r,X�2�r,X� − 1�r,X��r2�r,X� ,

LONGITUDINAL FIELDS IN INTERACTIONS BETWEEN … PHYSICAL REVIEW A 76, 043835 �2007�

043835-3



r = x − X . �2.10�

Here Re�z�, the component in Hem of the operator �z2

−He�−1, is the inverse of the Helmholtz operator:

Re�z� = ��z2 − He�−1�11 = �z2��x,z� − h�−1. �2.11�

In the piecewise constant case �7�, Re�z� decomposes into
longitudinal and transverse parts

Re�z� = R	�z�P	 + R��z�P�,

R	�z� = �z2��x,z��−1,

R��z� = �z2��x,z� − p2�−1, �2.12�

where P	 and P� are the projector upon the longitudinal and
transverse subspaces �see Eq. �1.2��. Hence � decomposes as

� = �	 + ��. �2.13�

Below we denote by R��0� the operator R��0+ i0�. We now
study both contributions in some detail.

A. The longitudinal case

We have

�	 = � e

2m�0
�2

�g� ·
Im ��x,�0�
���x,�0��2

P	 · �g�

= � e

2m�0
�2� Im ��x,�0�

���x,�0��2
g	,g	� . �2.14�

In the piecewise constant case ��x ,�0� and P	 commute, so

�	 = � e

2m�0
�2

�g� ·
Im ��x,�0�1/2

���x,�0��
P	 Im ��x,�0�1/2

���x,�0��
· �g�

� � e

2m�0
�2

�g�
Im ��x,�0�
���x,�0��2

�g� �2.15�

Note that here �=���0� is taken at the atomic transition fre-
quency �0 and not at �=0 as in Vstat. From Eq. �2.14� we
conclude that �	 can be nonvanishing if there is overlap be-
tween the atomic wave functions and the dielectric. If the
latter is confined to the half space x3�0 and with X=Xe3,
X	0, then

��x,�0� = 1 + ���0���− x3� = 1 + ���0���− r3 − X�
�2.16�

and we have

�	�X� � � e

2m�0
�2 Im ���0�

1 + ����0��2 + 2 Re ���0�

� 
−�

+�

dr1dr2
−�

−X

dr3�g�r��2. �2.17�

Since the atomic eigenfunctions decay exponentially on an
atomic scale, the same holds true for �	�X�.

Let us see what happens in the dipole approximation.
Thus we replace Eq. �2.9� by

�dip
	 =

i

2
� e

2m
�2 dxdyg	�x� · �X�Re��0� − Re

*��0��X�

· g	�y� =
i

2
�0

2d	 · �X�R	��0� − R	��0�*�X� · d̄	 ,

�2.18�

where, noting that �r j =−ip j and p= im�Hat ,r�,

d = e dxx1�x�2�x� = −
e

2m�0
 dxg�x� = d	 + d�,

d	 = −
e

2m�0
 dxg	�x� ,

d� = −
e

2m�0
 dxg��x� . �2.19�

However, �dip
	 does not exist since �X �R	��0� �X�

= �X � ��0
2��X ,�0��−1 �X� is infinite. However, in Eq. �2.18�

two infinite quantities are subtracted, so the result may be
finite. Indeed, if we approximate Eq. �2.14� by replacing
��x ,�0� by ��X ,�0�,

�	 → � e

2m�0
�2 Im ��X,�0�

���X,�0��2
�g� · P	 · �g�

= � e

2m�0
�2 Im ��X,�0�

���X,�0��2
�g� · p

1

p2p · �g�

= e2 Im ��X,�0�
���X,�0��2

�12�
1

p2 �12� �2.20�

which is finite but vanishes for X outside the dielectric.

B. The transverse case

Let us compare the above results with the transverse situ-
ation. Now, with g� the transverse component of g,

�� =
i

2
� e

2m
�2

��R���0� − R���0�*�g�,g�� . �2.21�

Except for special cases such as certain rotational invariant
systems, the Green’s function associated with R��z� cannot
be obtained explicitly. Instead we consider the approximate
case where Im ��x ,�0�=Im ��x ,�0� is retained to first order.
Thus we split ��x ,�0� into its real and imaginary parts

��x,�0� = Re ��x,�0� + i Im ��x,�0� = Re ��x,�0�

+ i Im ��x,�0� , �2.22�

and by only keeping terms to first order in Im ��x ,�0�
=Im ��x ,�0� in R���0�−R���0�* we obtain

�� = �1
� + �2

�,

�1
� =

i

2
� e

2m
�2

„�R1
���0� − R1

���0�*�g�,g�
… ,
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�2
� =

1

2
� e�0

2m
�2

�R1
���0�*Im ��x,�0�R1

���0�g�,g�� ,

�2.23�

where

R1
��z� = �z2 Re ��x,z� − p2�−1. �2.24�

Note that �1
� is the decay constant for the nonabsorptive but

dispersive system characterized by the real dielectric func-
tion Re ��x ,��.We can rewrite it as

�1
� = 
� e

2m
�2

„���0
2 Re ��x,�0� − p2�g�,g�

…

= 
� e

2m
�2

��„�0
2 Re ��x,�0� − p2

…P�g,g�

= 
� e

2m
�2 dx dyg�x�

� �x��„�0
2 Re ��x,�0� − p2

…P��y� · g�y� . �2.25�

We obtain the dipole approximation by replacing
�x ��(�0

2 Re ��x ,�0�−p2�P� �y� by

�X��„�0
2 Re ��X,�0� − p2

…P��X�

= dk�X�k��„�0
2 Re ��X,�0� − k2

…�U − ekek��k�X�

= �2
�−3 dk�„�0
2 Re ��X,�0� − k2

…�U − ekek�

= �2
�−32

3
U dk�„�0

2 Re ��X,�0� − k2
…

=
�0

6
2
�Re ��X,�0�U , �2.26�

so, using Eq. �2.19�,

�1dip
� = 
� e

2m
�2 dxg�x�

�0

6
2
�Re ��X,�0�U · dyg�y�

=
�0

3

6

�Re ��X,�0��d�2. �2.27�

In the vacuum case �Re ��X ,�0� is replaced by 1 and we
retrieve the decay constant �vac=2�1dip

� =�0
3 �d�2 / �3
� for an

atom in free space. Here we assumed that Re ��x ,�0��0.
This is not always the case. For small silver spheres, which
otherwise behave as an absorbing dielectric, Re ��x ,�0� can
be negative in a frequency interval in the optical range, re-
sulting in �1

���0�=0. In the half-space case, with X outside
the dielectric, the above expression reduces to the vacuum
case. Another interesting situation is that of periodic dielec-
trics �photonic crystals�. Then it can happen that �0 falls in a
photonic band gap and �1

� vanishes. But this need not be the
case for �2

�.
Comparing �2

� with �	 we see that apart from the obvious
change g	→g� the only difference is that R	��0� is replaced
by R1

���0�. However, this change is rather profound.

Whereas R	��0� is a multiplication operator in coordinate
space, due to the presence of p2 in R1

���0�, this operator is
nonlocal in coordinate space and leads to wave propagation.
Thus we expect a different behavior, in fact some power law,
as the atom is moved away from the dielectric. We demon-
strate this, making the further approximation of replacing
R1

��z� in Eq. �2.23� by its free counterpart

R0
��z� = �z2 − p2�−1, �2.28�

taking for 1 and 2 hydrogenic 1s and 2p states, solely
depending on the atomic internal coordinate r. This approxi-
mation is not unreasonable for a sufficiently large distance
between the atom and dielectric �from a mathematical point
of view R��z� and R1

��z� converge towards R0
��z� in strong

resolvent sense as X→��. However, contrary to the original
Eq. �2.21�, the approximate expression, Eq. �2.23� for �2

� in
general only exists for Im ��x ,�0� restricted to a bounded
space region. It becomes infinite in the half space case. How-
ever for a sphere centered in the origin and taking Coulomb
1s and 2p states for the ’s we find that �2

�, which is now
finite, contains a contribution proportional to X−2 for large X
and additional terms featuring higher powers of X−2 and a
contribution that is exponentially decaying on an atomic
scale

�2
��X� �

X→�

X−2 + O�X−4� . �2.29�

The decay parameter in the exponential contribution is the
same as in the corresponding longitudinal case. Details are
given in Appendix B.

III. THE JENA FORMALISM

As mentioned earlier the Hamiltonian employed by the
Jena group �3� differs from the one in Ref. �1�. In particular
it involves VCoul rather than Vstat. Also the vector potential
has no longitudinal component but there is an additional term
of the nature of a scalar potential, involving longitudinal
field operators. On the other hand, as shown in Ref. �1�, a
unitary transformation exists �alternatively the same result
follows by adding a suitable total time derivative to the
Lagrangean�, that relates H, above, to one that features the
Coulomb potential and a scalar potential as in Ref. �3� �in
fact we are dealing with a gauge transformation of the vector
and scalar potentials�. The two do not coincide since in Ref.
�3� the special case of an infinitely extended absorptive di-
electric is considered, in which case the electromagnetic
fields become functionals of the auxiliary ones �1�. We now
show directly that the Hamiltonian used in Ref. �3� is uni-
tarily equivalent to one that once more contains Vstat.

Starting point in the Jena formalism is a set of creation
and annihilation operators f*�x ,�� and f�x ,��, ��0, acting
in the symmetric Fock space over L2�R3 ,dx ;C3� and satisfy-
ing

�f�x1,�1�,f*�x2,�2�� = ��x1 − x2����1 − �2�U . �3.1�

The fields are then given by �we set �=c=�0=1�

E�x� = 
0

�

d��E�x,�� + E*�x,��� ,
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A�x� = 
0

�

d�
1

i�
�E�x,�� − E*�x,��� ,

E�x,�� =
i�2

�

 dyG�x,y,�� · �Im ��y,��f�y,�� ,

�3.2�

where G is the Helmholtz Green’s function

G�x,y,�� = G�x,y,� = i0� = − ��x��z2��x,z� − h�−1�y��z=�+i0

= − ��x�Re�� + i0��y�� ,

h = �x � ��x � ¯ � = p2U − pp, p = − i�x. �3.3�

The Hamiltonian employed in Ref. �3� is then

H = Hf + �
n

1

2mn
�pn − enA��xn��2 + VCoul + ��,� ,

Hf = dx
0

�

d��f*�x,�� · f�x,��, − �x�x� = E	�x� .

�3.4�

Let now

W�x� = W�x,x1,x2, . . . � = �x�0�x,x1,x2, . . . � ,

�0�x,x1,x2, . . . � = �
n

en

4
�x − xn�
, �3.5�

and U the unitary operator

U = exp�i�A	,W�� = exp�i�A,W�� ,

�F,G� = dxF�x�G�x� . �3.6�

We define

H� = UHU−1. �3.7�

Then

H� = Hf + �
n

1

2mn
�pn − A�xn��2 + Vstat, �3.8�

with Vstat given by Eq. �2.5�. Thus the term �� ,� has disap-
peared, VCoul is replaced by Vstat and A	 is added to A�. We
note that H� is similar to Eq. �2.3�. The proof is given in
Appendix C.

IV. DISCUSSION

A. Summary of results

We studied the longitudinal interactions between an atom
and an absorptive dielectric and distinguished two aspects.
The first, and probably the most interesting, is the appear-
ance of Vstat, which involves the static permittivity �stat

=���=0�, instead of the Coulomb potential. It is an exact
consequence of the employed formalism and can be traced
back to the fact that the null space of the generator of the
time evolution in the auxiliary field formalism only contains
a subset of the longitudinal subspace, a property it shares
with He. A remnant of this we find in Eq. �C17� below, where
Qe does not equal the projector upon the transverse sub-
space. Vstat gives rise to a shift in the atomic eigenvalues
relative to the Coulomb case.

There is a direct way to see that �stat enters into the time
evolution. To see this, we write

E�t� = �2
�−1
�

dz exp�− izt�Ê�z� ,

� = R + i�, � 	 0, �4.1�

where Ê�z�, the Laplace transform of E�t�, can be expressed,
using Maxwell’s equations, in terms of the initial fields at t

=0 and Ĵ�z�, the Laplace transform of the current density

J�x,t� = �
n

enẋn�t��„x − xn�t�… , �4.2�

i.e.,

Ê�z� = �z2��x,z� − h�−1�iz�E�0� − Ĵ�z�� − �x � B�0�� .

�4.3�

The right-hand side has a pole in z=0. Its residue can easily
be calculated using the auxiliary field formalism, but also by
directly determining the asymptotic form of �z2��x ,z�−h�−1

as z→0 �see Ref. �8�, Appendix A�, with corresponding con-
tribution to E�t�,

E0�x,t� = − �x��x,t� ,

− �x · �stat�x��x��x,t� = ��x,t� = �
n

en�„x − xn�t�… .

�4.4�

Laplace transforms can also be used to obtain an expression
for A	�x , t� for x inside the dielectric. In the special case,
where an external �i.e., outside the dielectric� time-dependent
charge distribution ��x , t� is switched on at t=0, at which
time the fields vanish, we can start from the Laplace trans-
form of �x ·D�x , t�=��x , t� to obtain

A	�x,t� = �x dy
1

4
�x − y�0

t

dsm�x,t − s���y,s� ,

m�x,t� =
1

2
i
 d� exp�− i�t�

1

�

 1

�stat�x�
−

1

��x,��� .

�4.5�

Note that the integrand in the last equation is well behaved in
�=0 since �stat=���=0�. Thus A	�x , t� vanishes for x out-
side the dielectric, where �stat�x�=��x ,��=1, but depends on
the difference of their inverses inside the medium.
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Another aspect is a coupling between the atom and the
longitudinal field modes, which turns the excited atomic
states into resonances �they acquire a negative imaginary
part�, giving rise to the decay of excited atomic states. Con-
trary to radiative decay, this mechanism requires the close
proximity of the atom and absorptive medium and is absent
for an atom outside the medium in the dipole approximation.
The decay parameter �	 involves ���0�, where �0 is the
atomic transition frequency and vanishes exponentially on an
atomic scale with increasing distance between the atom and
absorptive dielectric.

Let us return to the potential �1.5�, which we write as

V = VCoul +
�

2 + �

 e2

4
�r + 2X�
−

e2

8
�r3 + X�� , �4.6�

which is valid for a hydrogen atom with fixed nucleus at X
=Xe3 in vacuum above the half space x3�0, filled with a
spatially homogeneous absorptive dielectric with susceptibil-
ity �. Here r=x−X is the distance between the electron and
proton. For large � �for water at 0°C the static permittivity is
87.9, for ice at the same temperature 96.6� � / �2+���1 and
for an atom close to the interface there may be observable
effects on the atomic eigenvalues and radiative emission
spectrum. In principle the corrections to the Coulomb eigen-
values can be calculated for the hydrogenic case. For an
atom close to the interface r and X are of the same order, so
an expansion based upon relative smallness of r and X is not
useful. In addition other, more complicated, atoms are used
in practice.

Other processes may change as well. In particular reso-
nant energy transfer between identical atoms can be affected.
For instance Förster processes �9,10� can be such a case.
They are usually treated by means of a dipole model for the
atoms and in the interactions between them the vacuum per-
mittivity is replaced by the permittivity of the embedding
material taken at the atomic transition frequency �0. The
argument behind this is that the excited atom is associated
with an oscillating charge distribution with frequency �0. If
the dielectric does not have eigenvalues or resonances near
�0 �if this were the case it would be strongly absorbing�, then
the effect would be a dynamic polarization of the medium,
which involves ��x ,�0�.

Results by the Jena group �3� and the author �Ref. �1�,
Sec. VIII�, again based upon a quantized form of the phe-
nomenological Maxwell’s equations, also show an �0 depen-
dence, but now through the Helmholtz Green’s function.
Here the dipole approximation was made. A more precise
description, using the present approach, leads to a more com-
plicated situation. Now the atomic eigenvalues of atom j
depend not only on the relative electron coordinate r j with
respect to the nuclear coordinate X j but, since Vstat depends
on the latter, also on X j itself. Thus, if two atoms are in
regions with different permittivity, their transition frequen-
cies may also differ, thus modifying or even destroying the
resonance condition.

In an essentially infinite medium, containing a collection
of embedded atoms, Förster processes can contribute to the
broadening of individual atomic levels in addition to radia-

tive broadening. In practice it is difficult to disentangle the
two �11�.

Apart from an imaginary component, the coupling to lon-
gitudinal fields also give a shift in the atomic eigenvalues.
Thus, in Sec. II, �2→�2+��2 with

��2
	 = � e

2m
�2

0

�

d�
1

2�

1

�0 + i� − �

� �g� ·
Im ��x,��


����x,���2
P	 · �g� . �4.7�

We already encountered its imaginary part �	. However, as
can be seen from inserting a Lorentz susceptibility

��x,�� � 1 −
�2

��� + i��
, �4.8�

we have an infrared diverging �nonintegrable in �=0� real
part �Lamb shift�. This is well known from the vacuum case
but there the fields are transverse. But here it is of a different
nature since it depends on the behavior of Im ��x ,�� in �
=0. Thus, if Im ��x ,��=O��1+��, �	0, as �↓0, then ��2

	 is
finite. In general the renormalization procedure discussed in
�5� for nonabsorptive dielectrics, although it applies to the
transverse case, does not work in the longitudinal situation.

The above results are obtained using a quantized form of
the phenomenological Maxwell’s equations. However, it
should be realized that the effects discussed above take place
on a scale of the order of atomic dimensions, where the
validity of the macroscopic equations becomes questionable.
We also assumed that the atomic nucleus is frozen in a po-
sition close to but outside the absorptive dielectric. This can
be accomplished in practice by embedding the atom in a
second dielectric, nonabsorbing and nondispersive in the fre-
quency range of interest. For atoms inside dielectrics the
phenomenological Maxwell’s equations are in principle no
longer applicable. The interactions with an atom with its
nearest neighbors will not be described accurately in this
way. Sometimes this situation is treated using a real cavity
model. See, for instance, Ref. �12�. There the atom is as-
sumed to be contained in a small vacuum sphere inside the
dielectric. Its radius is then chosen to obtain the best possible
results. Since the atom is now in vacuum, the usual minimal
coupling featuring the microscopic vector potential is em-
ployed. From a microscopic point of view this should be
correct if there is no significant overlap with the wave func-
tion of the dielectric, typically for distances of a few atomic
diameters or more. Note further that the real cavity model
leads to boundary conditions, modifying the transverse
Helmholtz Green’s function and hence radiative lifetimes,
but that in the longitudinal Green’s function, which does not
contain differential operators, no boundary conditions are in-
volved, only changes in ��x ,�0� and �stat�x� appear. A thor-
ough discussion of the electrodynamics of mesoscopic media
is given by Keller �13�. In concluding this part we note that
the phenomenological approach gives some insight into the
processes that take place but that suitable experiments, if
possible, should be useful to learn more about the actual
situation.
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B. Microscopic description of longitudinal decay

Radiative atomic decay is well understood. It is due to the
coupling of the atomic states with the field continuum states,
which already takes place in vacuum. There, to leading order,
the decay constant is proportional to the field local density of
states, which is given by the imaginary part of the Helmholtz
Green’s function, taken at the atomic nuclear coordinates.
The latter is still true in the transverse absorptive case al-
though the density of states concept breaks down �see Ref.
�14� for the photonic crystal case�. In the longitudinal situa-
tion we also expect some coupling to a continuum but here
the situation is less obvious, longitudinal decay being absent
in the vacuum case.

In a microscopic description the dielectric material can be
interpreted as a large molecule and the Coulomb gauge can
be employed. Then decay of an excited atom through longi-
tudinal interactions must be caused by a coupling, through
Coulomb interactions, with continuum modes in the spec-
trum of the material. Apart from electron detachment from
the material �such as the photoelectric effect in metals, not
considered here�, this, in general, requires an infinitely ex-
tended dielectric. For instance, atoms can then couple to a
continuous phonon spectrum. Such processes seem quite un-
likely, suggesting that longitudinal decay hardly takes place
�but the situation changes drastically if vibrationally excited
molecules are considered�. Experimental verification may be
difficult due to other decay modes such as radiative decay.

Dielectric systems interacting with transverse fields have
been studied from a mesoscopic point of view in the past �the
well-known Hopfield model �15,16�� for spatially homoge-
neous systems. For an extension to dielectrics filling a half
space, see Ref. �17�.

C. The unitary transformation U

Although a unitary transformation such as U
=exp�i�A ,W��, Eq. �3.6�, leaves the spectrum, and in par-
ticular the eigenvalues, of H invariant, this is not necessarily
true for the resonances originating from the excited atomic
states due to the coupling with the fields. Note here that

��z − H�−1,� = ��z − H��−1U,U� , �4.9�

so, if =at � vac, U will contain contributions from all
Fock layers, whereas the atomic state is also altered,

U =  + i�A,W� + ¯ , �4.10�

and the contributions from resonant poles on both sides of
Eq. �4.9� look quite different. For further remarks, see Ref.
�1�, Sec. X. Strictly speaking U is not properly defined since
the vector potential has an infrared divergence. This can be
remedied in an ad hoc way by introducing a cutoff in A, but
here this is not necessary.

Another point is that U does not have a proper limit in the
dipole approximation. Formally, for a one electron system
�nuclear coordinate X, charge −e, relative electron coordi-
nate r� it turns into Udip=exp�ier ·A	�X��. Although the mo-
menta transform correctly, infinities are encountered in cal-
culating the transformed field Hamiltonian. In particular Eq.
�C13� now diverges and this remains true with a cutoff in the

vector potential. But it remains possible to make a dipole
expansion of Vstat in the final result. For example, we can do
so for the potential �4.6�.

D. Related work

Atoms interacting with absorptive dielectrics have been
considered by the Jena group in a number of papers. Origi-
nally a Green’s function method was employed �12,18�, but
in subsequent work a Hamiltonian formalism, involving
some form of the Hamiltonian, �3.4�, was used to study vari-
ous physical situations �2,3,19�. Other recent contributions
can be found in Refs. �17,20,21�. Longitudinal couplings
play an essential role in Ref. �3�, where intermolecular en-
ergy transfer is considered. However, use is made of a dipole
approximation, which makes a comparison with the present
approach not possible, since the unitary transformation
breaks down. The same observation applies to other work,
such as the microscopic approach by Juzeliūnas and An-
drews �20�, which also makes use of the dipole approxima-
tion, as is the case in Ref. �17�. Thus it seems unlikely that a
Hamiltonian featuring Vstat can be retrieved from these ap-
proaches, once the dipole approximation has been made.
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APPENDIX A: THE ATOMIC DECAY CONSTANTS

Here we give a short description of the use of the Fesh-
bach projection technique to determine the poles in the lower
complex half plane C− of the analytic continuation of the
object

��z − H�−1�,�� = ����z − H�−1���, Im z 	 0, �A1�

in Eq. �2.7�. If P is a projector, H an operator, and Q=1
− P then the Feshbach formula gives

P�z − H�−1P = �z − PHP − PHQ�z − QHQ�−1QHP�−1P

= �z − Heff�z��−1P . �A2�

Possible poles of this quantity are then given by the solutions
of the equation

zP0 = Heff�z�P0, �A3�

where P0 is a projector with P0� P. In case P is finite-
dimensional this is a relation for matrix-valued objects. In
the case at hand we can take
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P = ������ = �2��2� � �vac��vac� , �A4�

which is one-dimensional in which case P0= P and Eq. �A3�
is a scalar equation. However, if � is degenerate or if there
are atomic states with energy close to �2 then P must be
enlarged to take these states into account �5�. In order to keep
the bookkeeping simple we shall assume that such states are
either not present or can be neglected. As a consequence Eq.
�A3� takes the form

z = Heff�z� . �A5�

Now, neglecting quadratic terms in A, we have

H = Hf + Hat + �Hint, �A6�

where � is a parameter that allows us to keep track of powers
of the interaction in the sequel and

Hat =
p2

2m
+ Vstat,

Hint =
e

2m
�p · A�x� + A�x� · p� . �A7�

Since �vac �A�x� �vac�=0 we have PHQ= PHintQ. We shall
also assume that atomic states different from 1 and 2 can
be neglected in Hat. As a result we obtain

Heff�z� = �2 + �2�2 � vac�Hint�z − QHfQ − �1�1��1�

− �QHintQ�−1Hint�2 � vac� . �A8�

We can now expand z=z��� in powers of �, z���=z0+�z1

+�2z2+ . . . �in more general situations P0= P0��� must also
be expanded�. Then z0=�2+ i0, z1=0, and

z2 = �2 � vac�Hint�1��z0 − �1 − Hf�−1�1�Hint�2 � vac� .

�A9�

Here we skipped the Q’s around Hf since Hint �vac� is al-
ready in the Q subspace. We now evaluate the various terms
in this expression. Thus

�1�Hint�2 � vac� =
e

2m
�
�
 d��1��2��−1/2a*�u���

��p · u��1�x� + u��1�x� · p��2 � vac�

=
e

2m
�
�
 d��2��−1/2�u����1�

��p · u��1�x� + u��1�x� · p��2� , �A10�

where

�1��p · u��1�x� + u��1�x� · p��2�

= − i dx�1�x��x · �u��1�x�2�x��

+ 1�x�u��1�x� · �x2�x��

= i dxu��1�x� · ���x1�x��2�x� − 1�x��x2�x��

= i dxu��1�x� · g�x� , �A11�

so

�1�Hint�2 � vac� = i
e

2m�
�
 d��2��−1/2�u���

� dxu��1�x� · g�x� �A12�

and similarly

�2 � vac�Hint�1� = − i
e

2m�
�
 d��2��−1/2�u���

� dxg�x� · u��1�x� . �A13�

Here we note that the atomic eigenfunctions not only depend
on the relative electronic coordinate r=x−X but also on X
since this is the case for Vstat. Thus g=g�x ,X� or g
=g�r ,X�. Since Hf =� �u��� and �u�����u���=���−�������
we end up with

�2 � vac�Hint�1��z0 − �1 − Hf�−1�1�Hint�2 � vac�

=� e

2m
�2 dxdyg�x� · �

�
 d��x�u��1��2��−1

���0 + i0 − ��−1�u��1�y� · g�y� , �A14�

where �0=�2−�1 is the atomic transition frequency. Then, to
leading order,

Im z = − � e

2m
�2 dxdyg�x� · �

�
 d��x�u��1�

��2��−1
���0 − ���u��1�y� · g�y�

= − 
� e

2m
�2 dxdyg�x� · �

�
 d��x�u��1�

����0
2 − �2��u��1�y� · g�y�

= −
i

2
� e

2m
�2 dxdyg�x� · �x�Re��0�

− Re��0�*�y� · g�y� . �A15�

The last step follows from

�
�
 d��u��1����0

2 − �2��u��1�

=
1

2
i
�
�
 d��u��1����0

2 − i0 − �2�−1

− ��0
2 + i0 − �2�−1��u��1�

=
1

2
i
�
�
 d���u������0

2 − i0 − �2�−1

− ��0
2 + i0 − �2�−1��u����11
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=
1

2
i
���0

2 − i0 − He�−1 − ��0
2 + i0 − He�−1�11

=
1

2
i
�Re��0�* − Re��0�� . �A16�

APPENDIX B: AN APPROXIMATE EXPRESSION
FOR �2

�

As a first step we need to calculate the function

h�r� = �r��z2 − p2�−1g��, z2 = �0
2 + i0, �B1�

for the case that 1 and 2 are hydrogenic 1s and 2p states.
Thus

1�r� = n1 exp�− �r�, n1 =��3



,

2�r� = n2c · r exp�− �r�, n2 =��5



, �B2�

where c is a real unit vector. In case they are eigenfunctions
of the Coulomb Hamiltonian

H =
1

2m
p2 −

e

r
, �B3�

with eigenvalues �1 and �2,

� =
�

2
, � = me2, n = n1n2,

�1 =
me4

2
, �2 =

me4

8
. �B4�

Then

g�r� = n
�c · rr
1

r
− c� exp�− �r� ,

� = � − �, � = � + � . �B5�

Its Fourier transform is

g̃�k� = �2
�−3/2 dr exp�ik · r�g�r�

= − n�2
�−3/24
��c · �k�k − c�����2 + k2�−1 �B6�

and

g̃��k� = �U − ekek� · g̃�k� . �B7�

However, with f = f�k ,��= ��2+k2�−1,

�k�kf = U
1

k
�kf + ekekk�k

1

k
�kf , �B8�

so

�U − ekek� · �k�kf = �U − ekek�
1

k
�kf = �U − ekek�

1

�
��f ,

�B9�

resulting in

g̃��k� = n�2
�−3/24
�1 −
�

�
���c · �U − ekek��k2 + �2�−1,

�B10�

and

h̃�k� = − n�2
�−3/24
�1 −
�

�
���

� c · �U − ekek��k2 − z2�−1�k2 + �2�−1. �B11�

Hence

h�r� = �2
�−3/2 dk exp�− ik · r�h̃�k�

= − n�2
�−34
�1 −
�

�
����z2 + �2�−1c · dk

�exp�− ik · r� � �U − ekek���k2 − z2�−1

− �k2 + �2�−1�

= h1�r� + h2�r� . �B12�

Recalling that ek=k−1k, h�r� can now be obtained using con-
tour integral techniques. In h1�r� the residue in k=z is picked
up and the result is a polynomial in r−1 times exp�i�0r�,
whereas for h2�r� the residue in k= i� is taken, resulting in
h2�r��exp�−�r�, which has exponential decay on an atomic
scale. More precisely

h1�r� = �c · �U +
1

�0
2�r�r� exp�i�0r�

r
,

� = 2n
� − �

��0
2 + �2�2 , �B13�

and

h1�r� · h1�r� = �2�1 − �c · er�2�
1

r2 + O� 1

r4� . �B14�

For a dielectric filling a sphere with radius d, centered in the
origin,

Im ��x,�0� = Im ���0���d − x� ,

x = X + r , �B15�

the corresponding contribution �2a
� to �2

� becomes

�2a
� =

1

2
� e�0

2m
�2

Im ���0�  dr��d − x�h1�r� · h1�r� .

�B16�

It is readily checked that ��d−x� vanishes in a neighborhood
of r=0 for X	d, so the singularities of h1�r� ·h1�r� in r=0
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cause no problems. Switching to x=r+X and setting X
=�−1e then gives

�2a
� =

1

2
� e�0

2m
�2

Im ���0�

� dx��d − x�h1�x − �−1e� · h1�x − �−1e� .

�B17�

Expansion around �=0 then gives �V is the volume of the
sphere�

�2a
� =

1

2
� e�0

2m
�2

Im ���0�Vc · �U − ee�c�2 + O��4�

=
1

2
� e�0

2m
�2

Im ���0�Vc · �U − ee� · c
1

X2 + O� 1

X4� .

�B18�

In the corresponding longitudinal case we have, assuming
X	d and omitting technical details

�	 = � e

2m�0
�2 Im ���0�

�1 + �„�0…�2
���d − x�g	,g	�

= � e

2m�0
�2 Im ���0�

�1 + ���0��2  dr��d2 − �X + r�2��g	�r��2

= � e

2m�0
�2 Im ���0�

�1 + ���0��20

�

drr2
0




d� sin �

�
0

2


d� � ��d2 − X2 − r2 − 2r cos ���g	�r,�,���2.

�B19�

Performing the � integral and setting cos �=u,

�	 = � e

2m�0
�2 Im ���0�

�1 + ���0��2

� 
0

�

drr2
−1

+1

du��d2 − X2 − r2 − 2ru�m�r,u�

= � e

2m�0
�2 Im ���0�

�1 + ���0��2X−d

X+d

drn�X,r� . �B20�

Here n�X ,r� still contains exp�−2�r� so �	 decays as
exp�−2�X�.

APPENDIX C: THE UNITARY TRANSFORMATION

We recast �� ,� such that it features the electric field,
which has advantages in the subsequent calculations. Thus

��,� = − �W,E� = − �W,E	� , �C1�

where the last equality follows from W being a gradient.
Equation �C1� is readily verified by integrating by parts and
using

�x · W�x� = �x
2�

n

en

4
�x − xn�
= − �

n

en��x − xn� = − ��x� .

�C2�

Although �� ,� does not vanish outside the absorptive me-
dium, E	�x� does. This follows from Eq. �3.2� for E and the
Helmholtz equation

��2��x,�� − h� · G�x,y,�� = − ��x − y�U , �C3�

by writing

��x,��E�x,�� =
i

�

��2��x,�� − h + h�

� dyG�x,y,�� · �Im ��y,��f�y,��

= −
i

�

�Im ��x,��f�x,��

+
i

�

h · dyG�x,y,�� · �Im ��y,��f�y,�� ,

�C4�

and noting that outside the medium ��x ,��=1 and
�Im ��x ,��=0, so E�x ,�� is transverse outside.

We now calculate the transformed momenta and field
variables. To start with the momenta

pn� = UpnU−1 = pn + i��A	,W�,pn� + . . . = pn + i��A	,W�,pn� ,

�C5�

since the higher order commutators vanish. Here

i��A	,W�,pn� = − �xn
�A	,W�

= dxA	�x� · �x�x
en

4
�x − xn�

= dxA	�x� · �− U�x
2 + �x�x + U�x

2�
en

4
�x − xn�

= dxA	�x��x
2 en

4
�x − xn�

=− en dxA	�x���x − xn� = − enA	�xn� , �C6�

so

pn� = pn − enA	�xn� . �C7�

Here we used the fact that U�x
2−�x�x is proportional to the

projector upon the transverse fields. We now turn to the field
operators �again the higher order commutators vanish�

f*�x,��� = �Uf*U−1��x,�� = f*�x,�� + g*�x,�� , �C8�

where
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g*�x,�� = i��A,W�,f*�x,���

=
i�
�


 dyW�y� · G�y,x,� + i0��Im ��x,�� .

�C9�

Taking adjoints

f��x,�� = f�x,�� + g�x,�� ,

g�x,�� = −
i�
�


�Im ��x,��  dyG�x,y,� − i0� · W�y� .

�C10�

Thus, for the field Hamiltonian

Hf� = dx
0

�

d���f*�x,�� + g*�x,��� � �f�x,�� + g�x,���

= Hf + dx
0

�

d���f*�x,�� · g�x,�� + g*�x,�� · f�x,���

+ dx
0

�

d��g*�x,�� · g�x,�� . �C11�

For the second term we obtain

 dx
0

�

d���f*�x,�� · g�x,�� + g*�x,�� · f�x,���

= dxW�x� · E	�x� = dxW�x� · E�x� = �W,E� .

�C12�

The last term is more difficult to calculate

 dx
0

�

d��g*�x,�� · g�x,��

=
1



 dydudxW�y� · 

0

�

d��3,

G�y,x,� + i0� · Im ��x,��G�x,u,� − i0� · W�u�

=
1



 dyduW�y� · 

0

�

d��3

��y�Re�� + i0� · Im ��x,��Re
*�� + i0��u� · W�u� .

�C13�

But Re�z� satisfies the resolvent identity

Re�z� · Im ��x,z�Re
*�z� =

i

2�2 �Re�z� − Re
*�z�� , �C14�

so

1





0

�

d��3�y�Re�� + i0� · Im ��x,��Re
*�� + i0��u�

=−
1

2
i


0

�

d����y�Re�� + i0��u� − �y�Re
*�� + i0��u��

=−
1

2
i


0

�

d����y�Re�� + i0��u� − Re�− � + i0��u��

=−
1

2
i


−�

�

d���y�Re�� + i0��u� . �C15�

Next we note that Re�z� is the 1−1 component of �z2

−He�−1 in the auxiliary field formalism and

1

2
i


�

dzz�z2 − He�−1 = −
1

2
Qe, �C16�

where Qe=1−Pe with Pe the projector upon the null space of
He, and �=R+ i�, �	0. Thus

1





0

�

d��3�y�Re�� + i0� · Im ��x,��Re
*�� + i0��u�

=
1

2
�y�Qe11�u� =

1

2
��y − u� −

1

2
�y�Pe11�u� , �C17�

so

 dx
0

�

d��g*�x,�� · g�x,��

=
1

2
 dyW�y�2 −

1

2
 dyduW�y� · �y�Pe11�u� · W�u�

=
1

2
 dyW�y�2 −

1

2
�Pe11 · W,W� . �C18�

Dismissing self-energies

1

2
 dyW�y�2 =

1

2
 dy�− �y�0�y�� · �− �y�0�y��

=−
1

2
 dy�0�y��y

2�0�y�

=
1

2
 dy�0�y���y�

= VCoul. �C19�

For the remaining term we need Pe11, which is, according to
Ref. �1�, Eq. �2.17�,

Pe11 = p�p · �stat�x�p�−1p , �C20�

so
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1

2
�Pe11 · W,W� =

1

2
�p�p · �stat�x�p�−1p · W,W�

=
1

2
„�p · �stat�x�p�−1p · W,p · W…

=
1

2
„�p · �stat�x�p�−1�x · W,�x · W…

=
1

2
„�p · �stat�x�p�−1�,�… = Vstat, �C21�

where again self-interactions are discarded. Thus

 dx
0

�

d��g*�x,�� · g�x,�� = VCoul − Vstat. �C22�

Note that, since we are dealing with the difference VCoul
−Vstat and both have the same self-interactions, the latter do

not occur if we regroup the various terms in a suitable way.
Finally,

��,�� = − �W,E�� = − �W,E� − i��A,W�,�W,E�� .

�C23�

Using similar techniques as before, this becomes

��,�� = − �W,E� − 2�VCoul − Vstat� . �C24�

Collecting results we arrive at

H� = Hf + �
n

1

2mn
�pn − enA�xn��2 + Vstat. �C25�
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